
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

  
Abstract—More and more, NASA will rely on concepts from 

autonomous systems, not only in mission control centers on the 
ground, but also on spacecraft and on rovers and other space 
assets on extraterrestrial bodies.  Autonomy facilitates not only 
reduced operations costs, but also adaptable goal-driven 
functionality of mission systems. Space missions lacking 
autonomy will be unable to achieve the full range of advanced 
mission objectives, given that human control under dynamic 
environmental conditions will not be feasible due, in part, to the 
unavoidably high signal propagation latency and constrained 
data rates of mission communications links.  

While autonomy supports cost-effective accomplishment of 
mission goals, autonomicity supports survivability of remote 
mission assets, especially when tending by humans is not feasible.  
In principle, the properties of autonomic systems may enable 
space missions of a higher order than any previously flown.  
Analysis of two NASA agent-based systems previously 
prototyped, and of a proposed future mission involving numerous 
cooperating spacecraft, illustrates how autonomous and 
autonomic system concepts may be brought to bear on future 
space missions. 
 

Index Terms— Autonomous Systems, Autonomic Systems, 
Multi-Agent Technology, Intelligent Systems, Spacecraft. 
 
 

I. INTRODUCTION 
ith NASA’s renewed commitment to space exploration, 
particularly missions to Mars and the return to the 
Moon, greater emphasis is being placed on both human 

and robotic exploration.  In reality, even when humans are 
involved in the exploration, human tending of space assets 
becomes cost-prohibitive or is simply not feasible, and, 
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therefore, increasingly in future missions, remote mission 
assets will be required to work autonomously.   

Moreover, much of the mission control work on Earth will 
be performed by fully computerized systems operating with 
little or no human intervention.  In addition, certain 
exploration missions will require spacecraft that will be 
capable of venturing where humans simply cannot be sent.  
Spacecraft that, for cost or practical reasons to be described 
below, cannot be tended at all times by humans will be 
required to work autonomously. 

Though autonomy will be critical for future missions, it will 
be essential that these missions exhibit autonomic properties.  
Autonomy alone, absent autonomicity, will leave the 
spacecraft vulnerable to the harsh environment in which they 
have to operate, and in which, most likely, performance will 
degrade, or in which the spacecraft will be destroyed or will 
not be able to recover from faults. Ensuring that exploration 
spacecraft are endowed with autonomic properties will 
increase the survivability and therefore the likelihood of 
success of these missions. 

The remainder of this paper first discusses the need for 
autonomy and autonomicity in future NASA missions, and 
then discusses the autonomic properties of three systems: two 
multi-agent systems developed at NASA Goddard Space 
Flight Center (GSFC) prior to the advent of the Autonomic 
Computing initiative, and a concept mission that is currently 
planned to launch in the 2020 to 2030 timeframe.  It is 
interesting to note that the previously prototyped systems 
(LOGOS and ACT) were found to require autonomic 
properties, although the initiative had not be formulated at that 
point.   The concept mission (ANTS) is being defined with 
autonomicity in mind.   We will describe the exhibition of 
autonomic properties of each of these systems, illustrating why 
future space exploration missions will necessarily be 
autonomic. We then conclude with some challenges in 
developing autonomic systems for future NASA missions.   

 

II. AUTONOMY AND AUTONOMICITY IN NASA MISSIONS 

A. Autonomy 
Until the mid-1980s, all space missions were operated 

manually from ground control centers.  The high costs of 
satellite operations prompted NASA, and others, to begin 
automating as many functions as possible.  In this context, a 
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system is autonomous if it can achieve its goals without 
human intervention.  A number of more-or-less automated 
ground systems exist today, but work continues towards the 
goal of reducing operations costs to even lower levels.  Cost 
reductions can be achieved in a number of areas; greater 
autonomy of satellite ground control and spacecraft operations 
are two such areas. 

To develop greater autonomy for ground and space 
operations, NASA is putting more reliance on “intelligent” 
systems, and less on human intervention.  Intelligent systems 
will be able to make more of the operational and science 
decisions that are normally made by humans.  This will allow 
spacecraft to respond more quickly to opportunistic science as 
well as respond faster to spacecraft anomalies, time sensitive 
problems, or even routine operational issues.  In addition, as 
missions become more complex, the cost of personnel 
controlling missions has become a significant issue.  
Increasing the levels of autonomy and intelligence exhibited 
by missions will also reduce these costs.  

The goals of greater autonomy have been further 
complicated by NASA’s plans to use constellations and 
swarms of nanosatellites for future science-data gathering.  
These are significantly more complicated to operate compared 
to traditional single spacecraft missions.  Indeed, it may be 
impossible for human operators to control such systems.  
Spacecraft in swarms and constellations must communicate in 
order to coordinate and cooperate with each other. Radio or 
laser communications between constellation elements, or with 
ground control, may suffer large propagation delays or 
complete outage (e.g., due to signal blockage) for extended 
periods of time.  Therefore, because constellation/swarm 
elements will not always be able to rely on other elements or 
on ground systems, in addition to being autonomous, these 
systems will need to exhibit autonomic properties to ensure 
optimal performance, and even survival.  

B. Autonomicity 
NASA will require autonomicity to be exhibited in future 

missions, in order to ensure they can operate on their own to 
the maximum extent possible without human intervention or 
guidance.  A case can be made that all of NASA’s future 
systems should be autonomic, and exhibit the four key 
objective properties of autonomic systems---self-configuring, 
self-optimizing, self-healing and self-protecting---together 
with the attribute properties, viz. self-aware, environment-
aware, self-monitoring and self-adjusting [1].  The following 
discusses the need for each of these autonomic properties in 
NASA missions.   

Self-configuration is needed in NASA missions because the 
nature of the mission may change as time goes on.  New or 
different science may need to be analyzed based on data 
collected.  Or, if one science instrument fails or deteriorates, 
another onboard instrument may need to be used instead or to 
help adjust for the first’s condition.  Reconfiguring the 
spacecraft may be necessary when batteries or solar cells are 
deteriorating. In this case unnecessary instruments or 

functions may need to be shut down to reduce the electrical 
load and the remaining systems reconfigured to take this into 
account. 

Self-optimization is needed because the spacecraft, science 
instruments, and the science being collected may change as 
the mission proceeds, and the instruments may need to be 
adjusted or calibrated.  Also, the spacecraft could optimize its 
operations over time by learning more about the phenomenon 
it is observing, and how, or where, to best observe it. For 
constellations or swarms, vehicles will have to constantly 
adjust their mutually relative positions due to drift, or 
optimize themselves when members of the 
constellation/swarm drop out due to malfunctions or other 
problems. 

Self-healing is needed when a spacecraft is damaged, its 
software is corrupted, or a member of a swarm or constellation 
is lost.  Examples of software self-healing would be when a 
spacecraft is hit by a large amount of radiation and the 
memory is damaged or altered.  The spacecraft would have to 
recognize that the software has been modified or is not 
available and then request a new version from another 
spacecraft or from mission operations.  Self-healing in a 
swarm or constellation could include moving another 
spacecraft into the place of the lost one, or requesting a 
replacement. 

Self-protection is needed to keep the spacecraft out of 
harm’s way.  An example of when self-protection is needed is 
when solar flares erupt.  Solar flares release charged particles 
that can cause damage to electronics.  In cases such as these, if 
a solar flare can be detected, the spacecraft can put itself into 
sleep mode until the flare passes.  Another example would be 
a rover on Mars.  Large dust storms can cause damage to 
many systems.  When a dust storm is sensed, the rover could 
cover itself or go to a better-protected area, such as a rock 
outcropping or other sheltered area. 

Clearly these objective properties, commonly referred to as 
the self-CHOP properties, necessitate self-awareness and 
environmental awareness, and are achieved through being 
self-monitoring and self-adjusting. 

C. How both combine 
The best possible situation for NASA would be to be able 

to launch a spacecraft and then simply receive science data 
from it with no in-flight directions or corrections.  NASA is 
currently a long way from achieving this utopia.  To reach 
such a state of operations, NASA needs its missions to be both 
autonomous and exhibit autonomic properties.  Autonomous 
systems can operate independently and achieve self-direction.  
For NASA missions to be fully autonomous and achieve self-
governance and survive in harsh environments, autonomicity 
is required [17]. 

Combining autonomy with autonomic properties will 
necessitate a new set of requirements and verification 
procedures above and beyond what is currently available.  
NASA currently has no truly autonomous or autonomic 
missions.  New requirements will need to be developed for 
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these types of missions.  While autonomy may have 
similarities across missions, autonomic properties will vary 
depending on the type of the system and where it would 
operate.  This is also true for verification of autonomous and 
autonomic systems [2].  New verification procedures need to 
be developed, either through direct verification, or through 
simulation if direct verification is not possible.  Since these 
systems will be intelligent, their operation will vary over time, 
and it is unlikely that the same patterns of behavior will be 
exhibited on a recurring basis.  As a consequence new 
specification and verification methods need to be developed in 
order to guarantee correct operation.   This is a goal of the 
FAST (Formal Approaches to Swarm Technologies) project, 
described briefly in Section V. 

 

III. OVERVIEW OF TWO AGENT-BASED SYSTEMS 

A. Background 
The Advanced Architectures and Automation Branch at 

NASA GSFC has played a leading role in the development of 
agent-based approaches as a means of realizing NASA’s 
autonomy goals.  The aim of this work is to transition proven 
agent technology into operational NASA systems.  Two major 
successes include the development of the prototype Lights-
Out Ground Operations System (LOGOS) and the Agent 
Concept Testbed (ACT) [3, 4].  

There have been many definitions of agents and agent-
based systems [5, 6].  For the purposes of this paper, we 
define an agent to be a software system that is autonomous, 
and has the ability to perceive and effect its environment, and 
communicate with other agents (if present).  A multi-agent 
system, or community of agents, is simply a collection of such 
agents that collaborate and/or cooperate to accomplish a 

common goal.   
LOGOS was the first multi-agent system developed in the 

branch and provided an initial insight into the power of agent 
communities, autonomy, and autonomic properties of these 
systems.  It should be emphasized that while the system pre-
dates the Autonomic Computing initiative, it was clear during 
development that the objective properties that we now 
associate with the initiative were essential to the success of the 
prototype.   

Agents in the LOGOS system acted as surrogate human 
controllers, and interfaced with the legacy software that 
controllers normally used, as well as with humans. 

Based on the successful operation of this first prototype, 
development began on ACT, an environment in which richer 
agent and agent-community concepts were developed through 
detailed prototypes and operational ground-based and space-
based scenarios.  ACT has given GSFC more experience in 
architecting and developing communities of agents and 
autonomous and autonomic systems, as well as giving an 
improved understanding of the trade-offs and complications 
that accompany such systems.   

The implementation of LOGOS and ACT provided an 
opportunity to exercise and evaluate the capabilities supported 
by the agent architectures and refine the architectures as 
required.  It also provided an opportunity for space mission 
designers and developers to “see” agent technology in action.  
This has enabled them to make a better determination of the 
role that agent technology can play in their missions.  The 
remainder of this section describes the LOGOS and ACT 
agent communities, gives brief operational overviews of each, 
and highlights the autonomic objective properties of the two 
systems.   

B. LOGOS 
LOGOS is a proof-of-concept system consisting of a 
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Fig. 1 LOGOS agent community and legacy software.
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community of autonomous software agents that cooperate in 
order to perform functions previously performed by human 
operators who used traditional software tools such as orbit 
generators and command sequence planners.  The agents were 
developed in Java and used an in-house software backplane 
called Workplace for communication between the agents [16].  
The following discusses the LOGOS architecture and gives an 
example scenario of how LOGOS works. 

1) LOGOS Architecture:  
The LOGOS community architecture is shown in Figure 1; 

the architecture of an individual LOGOS agent is shown in 
Figure 2.  The LOGOS is composed of ten agents, some of 
which interface with legacy software, some which perform 
services for the other agents in the community, and others 
which interface with an analyst or operator.  All agents in the 
community have the ability to communicate with all other 
agents in the community. 

The System Monitoring and Management Agent 
(SysMMA) maintains a list of all the agents and their 
addresses in the community, and provides these addresses to 
other agents requesting services.  When started, each agent 
must register its capabilities with SysMMA and request the 

addresses of other agents whose services it may need. 
The Fault Isolation and Resolution Expert (FIRE) agent 

resolves satellite anomalies during satellite passes.  FIRE 
contains a knowledge base of potential anomalies and a set of 
possible fixes for each.  If it does not recognize an anomaly, 
or is unable to resolve it, it sends the anomaly to the user 
interface agent to be forwarded to an analyst for resolution. 

The User Interface Agent (UIFA) is the interface between 
the agent community and the user interface that the analyst or 
operator uses to interact with the LOGOS agent community.  
UIFA receives notification of anomalies from the FIRE agent, 
handles the logon of users to the system, keeps the user 
informed with reports, and routes commands to be sent to the 
satellite and other maintenance functions.  If the attention of 
an analyst is needed but none is logged on, UIFA will send a 
request to the PAGER agent to page the required analyst. 

The VisAGE Interface Agent (VIFA) interfaces with the 
VisAGE 2000 data visualization system.  VisAGE is used to 
display spacecraft telemetry and agent log information.  Real-
time telemetry information is displayed by VisAGE as it is 
downloaded during a satellite pass.  VIFA requests the data 
from the GIFA and AIFA agents (see below).  An analyst may 
also use VisAGE to visualize historical information to help 
monitor spacecraft health, or to determine solutions to 
anomalies or other potential spacecraft problems. 

The Pager Interface Agent (PAGER) is the agent 
community interface to the analyst’s pager system.  If an 
anomaly occurs, or another situation arises that necessitates an 
analyst’s attention, a request is sent to the PAGER agent, 
which, in turn, causes the analyst to be paged. 

The Database Interface Agent (DBIFA) and the Archive 
Interface Agent (AIFA) store short term and long term data, 
respectively, and the Log agent (LOG) stores agent logging 
data for debugging, illustration, and monitoring purposes.  
The DBIFA stores such information as the list of valid users 
and their passwords; the AIFA stores telemetry data. 

The GenSAA/Genie Interface Agent (GIFA) interfaces with 
the GenSAA/Genie ground station software [7], which 
handles communications with the spacecraft.  GIFA has the 
capability to download telemetry data, maintain scheduling 
information, and upload commands to the spacecraft.  Upon 
downloading anomalies and other data from the spacecraft, 
GIFA routes the data to other agents based on their requests 
for information. 

The MOPSS (Mission Operations Planning and Scheduling 
System) Interface Agent (MIFA) interfaces with the MOPSS 
ground station planning and scheduling software.  MOPSS 
keeps track of the satellite’s orbit, the time of the next pass, 
and how long it will last.  It also sends out updates to 
subscribing agents when the schedule changes. 

The agent architecture for LOGOS was rather simplistic 
(which was some of the motivation behind development of the 
ACT architecture) and consisted of three components:  
Processor, ACL Messenger, and Perceptor/Effector.  It also 
used an in-house developed software backplane for inter-agent 
communication, called Workplace, that serialized agent 
messages, routed them over the Internet to the destination 
agent, and then de-serialized them.  The main component of 
the LOGOS agents is the Processor, which contained all of the 
non-communication functionality. The ACL Messenger 
component performs the message sending and receiving via 
Workplace, and the Perceptor/Effector interfaced with the 
external legacy systems, databases, or user interfaces. 

2) An Example Scenario 
An example scenario of how agents in LOGOS 

communicate and cooperate starts with MIFA receiving data 
from the MOPSS scheduling software, which indicates that 
the spacecraft will be in a contact position in two minutes.  
MIFA then sends a message to the other agents, informing 
them of the upcoming event, in case they need to perform 
some preprocessing before the contact.  When GIFA receives 
the message from MIFA, it sends a message to the GenSAA 
Data Server to start receiving transmissions from the control 
center. 

After receiving data, the GenSAA Data Server sends the 
satellite data to GIFA, which has rules indicating what data to 
send to which agents.  As well as sending data to other agents, 
GIFA also sends all engineering data to the archive agent 
(AIFA) for storage, as well as trend information to the 
visualization agent (VIFA).  GIFA sends updated schedule 
information to the scheduling agent (MIFA) and sends a 
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report to the user interface agent (UIFA) to be sent on to an 
analyst for monitoring purposes.  If there are any anomalies, 
GIFA sends them to the FIRE agent for resolution. 

If there is an anomaly, the FIRE agent tries to resolve it 
automatically via a knowledge base containing anomalies and 
possible resolutions for each.  To fix an anomaly, FIRE would 
send a spacecraft command to GIFA to be forwarded on to the 
spacecraft.  After exhausting its knowledge base, if FIRE is 
not able to fix the anomaly, it forwards the anomaly to the 
user interface agent, which then pages an analyst and displays 
it on the analyst’s computer for action.  The analyst would 
then formulate a set of commands to send to the spacecraft to 
resolve the situation.  The FIRE agent, upon receiving the 
commands, would add the new resolution to its knowledge 
base for future reference, and send the commands to the GIFA 
agent, which would send them to the GenSAA/Genie system 
for forwarding on to the spacecraft. 

There are many other interactions going on between the 
agents and the legacy software that are not covered above.  
Examples include: the DBIFA requesting user logon 
information from the database; the AIFA requesting archived 
telemetry information from the archive database to be sent to 
the visualization agent; and the pager agent sending paging 
information to the paging system to alert an analyst of an 
anomaly requiring attention. 

C. ACT 
The motivation behind ACT was to develop a more flexible 

architecture than LOGOS for implementation of a wide range 
of intelligent or reactive agents.  After developing the 
architecture, sample agents were built to simulate ground 
control of a satellite constellation mission as a proof-of-
concept.  The following discusses the ACT agent architecture 
and gives an operational scenario using the satellite 
constellation proof of concept. 

1) ACT Architecture:  
Agents in ACT are built using a component architecture, 

where a component can be easily swapped out and replaced by 
another more advanced component.  This allows for easy 
removal of unneeded components for reactive agents and the 

inclusion of the necessary components to implement 
intelligent agents.  It also allows for additional unforeseen 
components implemented with new AI technologies to be 
added as they become available, without affecting previously 
implemented components.  A simple (reactive) agent can be 
designed by using a minimum number of components that 
receive percepts (inputs) from the environment and react 
according to those percepts.  A robust agent may be designed 
using more complex components that allow the agent to 
reason in a deliberative, reflexive, and/or social fashion.  This 
robust agent would maintain models of itself, other agents, 
objects in the environment, and external resources.  Figure 3 
depicts the components involved in a robust ACT agent.   

The following sections describe the components listed in 
Figure 3 and the framework in which the components are 
implemented. 

a) Modeler: The modeling component is 
responsible for maintaining the domain model of an agent, 
which includes models of the environment, other agents, and 
the agent itself.  The Modeler receives data from the 
Perceptors and agent communication components.  This data 
is used to update state information in its model.  If the data 
causes a change in a state variable, the Modeler publishes this 
information to other components that have subscribed to 
updates regarding that variable.  The Modeler is also 
responsible for reasoning with the models to act both 
proactively and reactively both with the environment and 
events that affect the model’s state.  In the future, the Modeler 
will also dynamically modify its model based on experience. 

The Modeler can also handle “what-if questions.”  These 
questions would primarily come from the planning and 
scheduling component, but may also come from other agents 
or from a person who wants to know what the agent would do 
in a given situation, or how a change in the agent’s 
environment would affect the values in its model. 

b) Reasoner: The Reasoner component works with 
information in its local knowledge base, as well as with model 
and state information from the Modeler, in order to make 
decisions and formulate goals for the agent.  This component 
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reasons with state and model data to determine whether any 
actions need to be performed to affect the agent’s 
environment, change its state, perform housekeeping tasks, or 
influence other general activities.  The Reasoner will also 
interpret and reason with agent-to-agent messages.  When 
action is necessary for the agent, the Reasoner will produce 
goals for the agent to try to achieve.  Currently, the Reasoner 
works more in a reactive manner. Either an input coming in, 
or a trigger from the clock, sets it in motion.  Work is also 
being undertaken to make the Reasoner more proactive. 

c) Planner/Scheduler: The Planner/Scheduler 
component is responsible for any agent-level planning and 
scheduling.  The planning component receives a goal or set of 
goals to fulfill in the form of a plan request.  This typically 
comes from the Reasoner component, but may be generated 
by any component in the system.  At the time a plan request is 
received, the planning and scheduling component acquires a 
state of the agent and system, usually the current state, as well 
as actions that can be performed by this agent (typically from 
the modeling and state component).  The planning and 
scheduling component then generates a plan as a directed 
graph of steps, which is composed of preconditions, an action 
to perform, and expected results (postcondition).  Each step is 
also passed to any Domain Expert components/objects for 
verification of correctness.  If a step is deemed incorrect or 
dangerous, the Domain Expert may provide an alternative step 
or solution to be considered.  Upon completion, the 
Planner/Scheduler sends the plan back to the component that 
requested it (usually the Reasoner).  The requesting 
component then either passes it on to the Agenda to be 
executed or uses it for planning/what-if purposes. 

d) Agenda/Executive: The Agenda and the Executive 
work together to execute the plans developed by the 
Planner/Scheduler.  The agenda typically receives a plan from 
the Reasoner, though it can receive a plan from another 
component that is acting in a reactive mode.  The Agenda 
interacts with the Executive component to send the plan’s 
steps, in order, for execution.  The Agenda keeps track of 
which steps are being executed, finished executing, idle, or 
waiting for execution and updates the status of each step as it 
moves through the execution cycle.  The Agenda reports the 
plan’s final completion status to the Planner and Reasoner 
when the plan is complete. 

The Executive executes the steps it receives from the 
Agenda.  If the preconditions are met, the action is executed.  
When execution finishes, the Executive evaluates the post-
conditions, and generates a completion status for that step.  
The completion status is then returned to the Agenda. 

A watch, attached to the Executive, monitors given 
conditions during execution of a set of steps.  Watches allow 
the Planner to flag things that have to be “looked out for” 
during real-time execution, which can be used to provide 
“interrupt’’ capabilities within the plan.  An example would 
be to monitor drift from a guide star while performing an 
observation.  If the drift exceeds a threshold, then the 
observation is halted.  In such a case, the watch would notify 

the Executive, which in turn would notify the Agenda.  The 
Agenda would then inform the Reasoner that the plan failed 
and the goal was not achieved.  The Reasoner would then 
formulate another goal (e.g., recalibrate the star tracker). 

e) Agent Communications: The agent communication 
component is responsible for sending and receiving messages 
to/from other agents.  The component takes an agent data 
object that needs to be transmitted to another agent and 
converts it to a message format understandable by the 
receiving agent.  The message format being used is based on 
Foundation for Intelligent Physical Agents (FIPA) [8] 
standards, and messages are sent to the appropriate agent 
using the Workplace messaging backbone. 

The reverse process occurs for an incoming message.  The 
communications component takes the message and converts it 
to an internal object and sends it to the other components that 
are subscribing to incoming messages.  The communications 
component can also have reactive behavior, where, for a 
limited number of circumstances, it produces an immediate 
response to a message. 

f) Perceptors/Effectors: The Perceptors are 
responsible for monitoring the environment on behalf of the 
agent.  An example of an environment is a spacecraft 
subsystem.  Any data received by the agent from the 
environment, other than agent-to-agent messages, enters 
through Perceptors.  An agent may have zero or more 
Perceptors, where each Perceptor receives information from 
specific parts of the agent’s environment.  A Perceptor may 
just receive data and pass it on to another component in the 
agent, or it may perform some simple filtering/conversion 
before passing it on.  A Perceptor may also be designed to act 
intelligently through the use of reasoning systems.  If an agent 
is not monitoring the environment, then it would not have any 
Perceptors (an example of this would be an agent that only 
provides expertise, such as fault resolution, to other agents). 

The Effector is responsible for effecting or sending output 
to the agent's environment.  Any agent output data, other than 
agent-to-agent messages, leaves through Effectors.  Typically 
the data leaving the Effectors will be sent from the Executive, 
which has just executed a command to send data to the 
environment.  There may be zero or more Effectors, where 
each Effector sends data to specific parts of the agent’s 
environment.  An Effector may perform data conversions and 
act intelligently and in a proactive manner when necessary.  
As with the Perceptors, an agent may not have an Effector if it 
is not required to interact with the environment. 
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g) Agent Framework: A framework is used to 
provide base functionality for the components as well as the 
inter-component communication facility.  The framework 
allows components to be easily added and removed from the 
agent while providing a standard communications interface 
and functionality across all components.  This makes 
developing and adding new components easier and makes new 
additions transparent to existing components in the agent.  
Each component in the architecture can communicate 
information to/from all other components as needed. 

The primary communications for components is based on a 
publish-and-subscribe model with direct links between 
components if large amounts of data need to be transferred.  
Components communicate to each other the types of data that 
they produce when queried.  When one component needs to 
be informed of new or changed data in another component, it 
subscribes to that data in the other component.  Data can be 
subscribed to whenever it is changed, or on an as needed 
basis.  With this mechanism, a component can be added or 
removed with no need to modify other components in the 
agent. 

h) Data Flow Between Components: Consider an 
example of how data flows between components of the ACT 
architecture when a spacecraft’s battery is discharging.  The 
scenario reads as follows: 
1) The agent detects a low voltage when reading data from 

the battery via a Perceptor.  The Perceptor then passes the 
voltage value to the Modeler, which has subscribed to the 
Perceptor to receive all percepts. 

2) When the Modeler receives the voltage from the 
Perceptor, it updates the value in its model.  In this case, 
the new value puts it below the normal threshold and 
changes the voltage state to “low”, which causes a state 
change event, and causes the Modeler to publish the new 
value to all subscribing components.  Since the Reasoner 

is a subscriber, the low voltage value is sent to the 
Reasoner. 

3) In the Reasoner, the low voltage value fires a rule in the 
expert system.  This rule calls a method that sends the 
Planner/Scheduler a goal to achieve a battery voltage 
level that corresponds to a full charge. 

4) When the Planner/Scheduler receives the goal from the 
Reasoner, it queries the Modeler for the current state of 
the satellite and a set of actions that can be performed. 

5) After receiving the current state of the satellite and the set 
of available actions from the Modeler, the 
Planner/Scheduler formulates a list of actions that need to 
take place to charge the battery.  It then sends the plan 
back to the Reasoner for validation. 

6) The Reasoner examines the set of actions received from 
the Planner/Scheduler and decides that it is reasonable.  
The plans are then sent to the Agenda. 

7) The Agenda puts the action steps from the plan into a 
queue for the Executive. 

8) When the Executive is ready to execute a new step, the 
Agenda passes it along for execution, in the normal one-
step-at-a-time fashion. 

9) The Executive executes each action until the plan is 
completed and then notifies the Agenda it is done. 

10) The Agenda marks the plan as finished and notifies the 
Reasoner that the plan finished successfully. 

11) After the plan is executed, the voltage rises and triggers a 
state change in the Modeler when the voltage returns to a 
fully charged state.  At that point the Reasoner is again 
notified that a change in a state variable has occurred. 

12) The Reasoner then notes the voltage has been restored to 
a fully-charged level and marks the goal as accomplished. 

 
2) ACT Operational Scenario 

Figure 4 illustrates an operational scenario involving a 
possible ACT agent community for a nanosatellite 
constellation.  It is based on the idea of a ground-based 

 

{ Coordinates the agent community in the MCC, manages mission goals and
coordinates the Contact manager agent}

{ Coordinates ground station activities (one agent per ground station), communicates with
  Spacecraft, sends and receives commands and telemetry }

{ Provides interface and interaction mechanisms to
  the outside world }

{ Plans and schedules contacts with the spacecraft via interface
  with external planner/scheduler (external resource) }

{ There is a proxy agent for each spacecraft in orbit.  The agents keep
   track of spacecraft status.  The agents will flag the Mission Management
   agent when an anomaly occurs that may need handling }MCC
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Fig. 4. Agent community being developed in ACT to test out the new agent architecture and some community concepts. 
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community of proxy agents---each representing a spacecraft in 
the nanosatellite constellation---which provide for 
autonomous operations of the constellation.  Other scenarios 
for the migration of this community of proxy agents to the 
spacecraft are discussed in terms of space-based autonomy 
concepts [9]. 

In the current scenario, there are several nanosatellites in 
orbit collecting magnetosphere data.  The Mission Control 
Center (MCC) makes contact with selected spacecraft when 
they come into view according to the schedule.  The agents 
that make up the MCC are: 
• Mission Manager Agent (MMA): coordinates the agent 

community in the MCC, manages mission goals, and 
coordinates with the Contact Manager Agent. 

• Contact Manager Agent (CMA): coordinates ground 
station activities, communicates with the spacecraft, and 
sends and receives data, commands, and telemetry. 

• User Interface Agent: sends data to users for display and 
gets commands for the spacecraft. 

• MCC Planning/Scheduling Agent: plans and schedules 
contacts with spacecraft via external Planner/Scheduler. 

• Spacecraft Proxy Agents: keep track of spacecraft status, 
health and safety, etc.  The proxies notify the Mission 
Manager Agent when anomalies occur that need 
handling. 

Each of the above agents registers with the GCC manager 
agent.  The GCC manager agent notifies them when a contact 
is approaching for their spacecraft, whether another agent is 
going to be added to the community, and how to contact 
another agent.   

The following is a spacecraft contact scenario that 
illustrates how the agents work with the GCC manager agent: 
• Agents register with the GCC Manager Agent at startup. 
• GCC Planner/Scheduler Agent communicates with the 

Proxy Agents to get spacecraft pass time data.  It then 
creates a contact schedule for all orbiting spacecraft. 

• GCC Manager Agent receives the schedule from the GCC 
Planner/Scheduler Agent and gives details of the next 
contact to the Contact Manager Agent. 

• The Contact Manager Agent contacts the spacecraft at the 
appropriate time and downloads the telemetry and sends it 
to the appropriate spacecraft Proxy Agent for processing. 

• The spacecraft Proxy Agents process the telemetry data, 
update the spacecraft’s status, evaluate any problems and 
send any commands to the Contact Manager to upload. 

• If a Proxy Agent determines a problem exists and an 
extended or extra contact is needed, it sends a message to 
the GCC Planner/Scheduler Agent, which re-plans the 
contact schedule and redistributes it to the GCC Manager. 

• The Contact Manager downloads data from, and uploads 
any commands to, the spacecraft as instructed by the 
spacecraft Proxy Agent.  The Contact Manager agent 
ends the contact when scheduled. 

An example of a typical contact with a satellite would be: 
• The Contact Manager Agent (CMA) receives an 

acquisition of signal (AOS) from a spacecraft.  The MCC 
is now in contact with the spacecraft. 

• The CMA requests the spacecraft to start downloading its 
telemetry data and sends the data to its proxy agent. 

• The proxy agent updates the state of its spacecraft model 
from the telemetry received.  If a problem exists, the 
Mission Manager Agent is contacted and appropriate 
action (if any) is planned by the system. 

• The Contact Manager Agent analyzes the downloaded 
telemetry data.  If there is a problem, the CMA may alter 
the current contact schedule to deal with the problem. 

• The CMA executes the contact schedule to download 
data, delete data, or save data for a future contact. 

• The Mission Manager Agent ends contact. 
 
 

 
 

Fig 5. : ANTS concept mission. 

IV. A CONCEPT AUTONOMOUS AND AUTONOMIC MISSION 
The NASA Autonomous Nano-Technology Swarm 

(ANTS) mission [10]-[13] will be made up of swarms of 
autonomous pico-class (approximately 1kg) spacecraft that 
will explore the asteroid belt.  There will be approximately 
1,000 spacecraft involved in the mission consisting of several 
types (Figure 5).  Approximately 80 percent of the spacecraft 
will be workers (or specialist) which will have a single 
specialized instrument onboard (e.g., a magnetometer, x-ray, 
gamma-ray, visible/IR, neutral mass spectrometer) and will 
obtain specific types of data.  Some will be coordinators 
(called leaders), and will have rules that determine the types 
of asteroids and data the mission is interested in, and will 
coordinate the efforts of the workers.  The third type of 
spacecraft are messengers, which will coordinate 
communications between the workers, leaders and Earth.  
Each worker spacecraft will examine asteroids it encounters 
and send messages back to a leader that will evaluate the data 
and send other spacecraft with specialized instruments to the 
asteroid to gather further information. 

This mission will involve a high degree of autonomy for 
reasons to be discussed, and autonomic properties will 
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enhance its survivability.  To implement this mission a 
heuristic approach is being considered that uses an insect 
analogy of a hierarchical social structure based on the above 
spacecraft hierarchy.  A transport ship will assemble the 
spacecraft during the journey to the asteroid belt and then 
release them upon arrival.  Artificial intelligence technologies 
such as genetic algorithms, neural nets, fuzzy logic, and on-
board planners are being investigated to assist the mission to 
maintain a high level of autonomy.  Sub-swarms will be 
formed that will act as teams that explore a particular asteroid 
based on the asteroid’s characteristics.  To examine an 
asteroid, spacecraft will need to cooperate since they each 
have only a single instrument on board.  Crucial to the mission 
will be the ability to modify operations autonomously to 
reflect the changing goals of the mission, and the distance and 
low-bandwidth communications to Earth.   

A scenario for the ANTS mission is based on the ANTS 
targeting an asteroid on which to perform an experiment and 
then forming a team to carry out that experiment.  Team 
leaders contain models of the types of science they wish to 
perform.  Parts of this model are communicated to the 
messenger spacecraft which relay it on to the worker 
spacecraft.  The worker spacecraft then take measurements of 
asteroids using their specialized instrument until data matches 
the goal that was sent by the leader.  The data will then be sent 
to a messenger to be relayed back to the leader.  If the data 
matches the profile of the type of asteroid that is being 
searched for, an imaging spacecraft will be sent to the asteroid 
to ascertain the exact location and to create a rough model 
prior to the arrival of other spacecraft, and which they will  
use to maneuver around the asteroid.   

Other spacecraft would then work together to finish the 
model and mapping of the asteroid as well as form virtual 
instruments that would include: 
• an asteroid detector/stereo mapper team that would 

consist of two spacecraft with field imaging 
spectrometers, and a dynamic modeler with an enhanced 
radio science instrument for measuring dynamic 
properties (such as spin, density, and mass distribution) 

• a petrologist team that would consist of X-ray, Near 
Infrared, Gamma-ray, Thermal IR, and a wide field 
imager to determine the distribution of elements, minerals 
and rocks present 

• a photogeologist team that would consist of Narrow Field 
and Wide Field Imagers and Altimeter to determine the 
nature and distribution of geological units based on 
texture, albedo, color, and apparent stratigraphy 

• a prospector team consisting of an altimeter, 
magnetometer, near infrared, infrared, and X-ray 
spectrometers to determine the distribution of resources 

 

V. ANALYSIS 
The following discusses the autonomic properties of the 

LOGOS and ACT multi-agent systems and the ANTS asteroid 

mission.   

A. Autonomic Properties of LOGOS 
The operational scenarios of LOGOS exhibit the four 

objective autonomic properties, or self-CHOP properties, as a 
community. 

 LOGOS self-configuration.  LOGOS self configures when 
the GIFA agent receives signals from the GenSAA/Genie 
ground station software that a spacecraft pass is about to 
happen.  When this occurs, the GIFA configures the system 
by waking up the necessary agents for the pass.  For example, 
if there are no anomalies, then the FIRE agent is not needed 
and is not woken up.  If it is needed, then LOGOS is 
configured for that pass with the FIRE agent up and ready to 
receive the anomaly.  The same is true for the visualization 
agent and the user interface agent.  If there is no user logged 
on, then those agents do not need to be woken up for the 
spacecraft pass. 

LOGOS self-optimization.  LOGOS self-optimizes itself 
through learning.  One example of this is through the learning 
that the FIRE agent does when it does not know how to fix an 
anomaly and notifies an analyst that it needs help.  After the 
analyst provides a set of commands to fix the anomaly, the 
FIRE agent stores those commands and the parameters to that 
anomaly in its knowledge base for future reference.  In this 
way it will be able to fix this problem when it occurs again; 
this may also be viewed as being self-healing and illustrates 
the interdependency of autonomic properties. 

A second way that LOGOS self optimizes is through the 
user interface and visualization agents.  These agents keep 
track of which analyst looks at what data so that that 
information would be pre-fetched and available to the analyst 
when he or she logs on to the system.  This saves time for the 
analyst, especially in a critical situation.  A third example is 
the pager agent, which notifies analysts when an anomaly is 
present.  This agent also keeps track of information that 
specifies which analysts are available at what times, and 
modifies who it calls first based on their usual availability. 

LOGOS self-healing.  LOGOS self-heals primarily through 
the actions of the FIRE agent.  The FIRE agent examines 
anomalies that occur and then issues commands to fix/heal the 
anomalies based on its knowledge base.  It also self-heals 
through the intervention of the human in the loop, who can fill 
in information when the FIRE agent does not have the 
requisite knowledge to solve a problem.  The human is viewed 
as part of the overall system architecture.  The FIRE agent 
also learns how to fix future anomalies based on inputs from 
the analyst when the FIRE agent needs help.  The self-healing 
aspect of LOGOS was its primary function, and is what made 
the system “lights-out” and enabled lower costs of future 
operations through reduced man-power requirements. 

LOGOS self-protecting.  The self-protecting aspects of 
LOGOS are limited.  The self-protection is primarily achieved 
by the FIRE and the user interface agent.  UIFA performs self-
protection when it authenticates a user logging on to the 
system to ensure the user has proper credentials.  For the FIRE 
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agent, self-protection is accomplished when checking 
commands entered by the analyst to ensure they do not harm 
the spacecraft, although it can be overridden by the analyst.   

B. Autonomic Properties of ACT 
The various operational scenarios of ACT exhibit at least 

three types of autonomic functionality and some of a fourth.  
The autonomic functionalities exhibited are: self-configuring 
(adaptation to changing environment), self-optimizing (steps 
to maximize utilization), self-healing (ability to recover from 
anomalies) and self-protecting (protect against failures).  The 
following further discusses ACT’s autonomic properties. 

ACT self-configuration.  As an example of this property, 
when ACT detects, from analysis of downloaded telemetry, 
that there is a problem, the Contact Manager alters the current 
satellite contact schedule to enable the problem to be 
addressed.  What is being reconfigured, in this case, is the 
spacecraft functionality for managing communications 
contacts with ground systems and controllers. 

ACT self-optimization.  As an example of this property, 
consider what happens when a Proxy Agent determines that a 
problem exists with its associated spacecraft.  When this 
situation arises, a replanning/rescheduling activity is 
performed to optimize the behavior of the entire ACT system. 

ACT self-healing.  As an example of this, again consider 
what happens when a Proxy Agent detects a problem with its 
associated spacecraft.  Following a diagnosis of the problem 
(which may involve access to the human component of the 
ACT) corrective actions, in the form of commands, are 
generated and made ready for transmission to the affected 
spacecraft.  This problem-diagnosis/corrective-action cycle is 
a major part of ACT’s self-healing capability. 

It should be noted that the three autonomic responses 
discussed above all stem from ACT’s determination that a 
problem has occurred.  In attending to the problem, ACT 
reconfigures, tries to optimize its operations, and proceeds to 
diagnose and solve the identified problem. 

ACT self-protection.  ACT is self-protecting in the sense 
that it constantly monitors the spacecraft systems and modifies 
its operations if a parameter ranges outside its normal bounds.  
An example of self-protection is given in the above example 
of dataflow between components of the architecture.  In this 
example, the battery is discharging and if nothing is done the 
spacecraft will lose power and become inoperable.  ACT then 
takes the necessary actions to recharge the battery (e.g., 
turning towards the sun). In addition, it also has self 
protection through validation of system commands to ensure 
that command sequences executed will not harm the 
spacecraft or put it in a position where it could be harmed. 

C. Autonomic Properties of ANTS 
ANTS self-configuration.  ANTS has an overall requirement 

to prospect thousands of asteroids per year with large but 
limited resources.  To accomplish this, it is anticipated that 
there will be approximately one month of optimal science 
operations at each asteroid prospected.  A full suite of 

scientific instruments will be deployed at each asteroid.  The 
ANTS mission resources will be configured and re-configured 
to support concurrent operations at hundreds of asteroids over 
a period of time.  

The overall ANTS mission architecture calls for specialized 
spacecraft that support division of labor (rulers, messengers) 
and optimal operations by specialists (workers).  A major 
feature of the architecture is support for cooperation among 
the spacecraft to achieve mission goals. The architecture 
supports swarm-level mission-directed behaviors, sub-swarm 
levels for regional coverage and resource-sharing, 
team/worker groups for coordinated science operations, and 
individual autonomous behaviors. These organizational levels 
are not static but evolve and self-configure as the need arises.  
As asteroids of interest are identified, appropriate teams of 
spacecraft are configured to realize optimal science operations 
at the asteroids.  When the science operations are completed, 
the team disperses for possible reconfiguration at another 
asteroid site.  This process of configuring and reconfiguring 
continues throughout the life of the ANTS mission. 

Reconfiguring may also be required as the result of a failure 
or anomaly of some sort.  Some examples are the following.  
A worker may be lost due to collision with an asteroid, failure 
of its communication devices, or hardware failure.  The loss of 
a given worker may result in the role of that worker being 
performed by another, which will be allocated the tasks and 
resources of the original.  Loss of communication with a 
worker may mean that the system has to assume loss of the 
worker, and the role may be allocated to another spacecraft. 
Loss of use of an instrument by a worker may require the 
worker to take the role of a communication device. 

ANTS self-optimization.  Optimization of the ANTS is 
undertaken at the individual level, as well as at the system 
level.  These optimizations are: 

• Rulers learning about asteroids 
• Messengers adjusting their position 
• Workers learning about asteroids 

Optimization at the ruler level is primarily through learning.  
Over time, rulers will be collecting data on different types of 
asteroids and will evolve to be able to better determine the 
characteristics of the types of the asteroids that are of interest, 
and perhaps the types of asteroids that are difficult to orbit or 
extract data from (e.g., an asteroid with a fast rotation that is 
difficult to focus on).  From this information the system as a 
whole is being optimized since time is not being wasted on 
asteroids that are not of interest, or too difficult to map. 

Optimization for messengers is achieved through 
positioning.  Messengers need to provide communications 
between the rulers and workers as well as back to Earth.  This 
means that a messenger will have to be constantly adjusting its 
position to balance the communications between the rulers 
and workers and perhaps adjusting its position to send data to 
Earth while also maintaining communications between rulers 
and workers. 

Optimization at the worker level is primarily through its 
experience gained with asteroids.  As a worker observes 
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asteroids and builds up a knowledge base of the different 
characteristics of asteroids, a worker may be able to 
automatically skip over asteroids that are not of interest, thus 
saving time and optimizing the exploration of the mission as a 
whole. 

ANTS self-healing.  The view of self-healing here is slightly 
different from that given in [1].  ANTS is self-healing not only 
in that it can recover from mistakes, but self-healing in that it 
can recover from failure, including damage from outside 
force.  In the case of ANTS, these are non-malicious sources: 
events such as collision with an asteroid, or another 
spacecraft, loss of connection, etc., will require ANTS to heal 
itself by replacing one spacecraft with another. 

ANTS mission self-healing scenarios span the range from 
negligible to severe.  An example entailing negligible self-
healing would be an instance where one member of a 
redundant set of gamma ray sensors fails before a general 
gamma ray survey is planned.  In such a scenario, the self-
healing behavior would be the simple action of deleting the 
sensor from the list of functioning sensors.  At the severe end 
of the scale, an example scenario would arise when the team 
loses so many workers it can no longer conduct science 
operations.  In this case, the self-healing behavior might be to 
advise the mission control center and, when a replacement 
worker arrives, to incorporate the replacement into the team, 
performing, additionally, any necessary self-configuration and 
self-optimization.  In some possible ANTS mission concepts, 
instead of “calling home” for help, an ANTS team may only 
need to request a replacement from another team or from a 
fielded repository of spares orbiting in the vicinity. 

Not only the ANTS team, but also ANTS individuals, may 
have self-healing behaviors.  For example, an individual may 
have the capability of detecting corrupted code (software).  In 
such a case, self-healing behavior would result in the 
individual requesting a copy of the affected software from 
another individual in the team, which would enable it to 
restore itself to a known operational state. 

ANTS self-protection.  The self protecting behavior of the 
team will be interrelated with the self-protecting behavior of 
the individual members.  The anticipated sources of threats to 
ANTS individuals (and consequently to the team itself) will be 
collisions and solar storms. 

Collision avoidance through maneuvering will be limited, 
because ANTS individuals will have limited ability to adjust 
their orbits and trajectories, since thrust for maneuvering is 
obtained from solar sails.  Individuals will have the capability 
of coordinating their orbits and trajectories with other 
individuals to avoid collisions with them.  Given the chaotic 
environment of the asteroid belt and the highly dynamic 
trajectories of the objects in it, occasional near approaches of 
interloping asteroidal bodies (even small ones) to the ANTS 
team may present threats of collisions.  Collision-avoidance 
maneuvering for this type of spacecraft presents a large 
challenge and is currently under consideration.  The main self-
protection mechanism for collision avoidance is achieved 
through the process of planning.  The ruler’s plans involve 

constraints that will result in acceptable risks of collisions 
between individuals when they carry out the observational 
goals given by the ruler.  In this way, ANTS exhibits a kind of 
self-protection behavior against collisions. 

Another possible ANTS self-protection mechanism could 
protect against effects of solar storms.  Charged particles from 
solar storms could subject individuals to degradation of 
sensors and electronic components.  The increased solar wind 
from solar storms could also affect the orbits and trajectories 
of the ANTS individuals and thereby jeopardize the mission.  
ANTS mechanisms that are protective against effects of solar 
storms have not been determined or included in the mission 
design.  One possible mechanism would involve a capability 
of the ruler to receive a warning message from the mission 
control center on Earth.  An alternative mechanism would be 
to provide rulers with a solar storm sensing capability through 
on-board, direct observation of the solar disk.  When the ruler 
recognizes a solar storm threat exists (either upon receipt of a 
solar storm warning from the control center or upon reaching 
its own conclusion from direct observations), the ruler would 
invoke its goal to protect the mission from harm from the 
effects of the solar storm.  In addition to its own action to 
protect itself, part of the ruler’s response would be to give 
workers the goal to protect themselves.  Part of an individual’s 
protective response might be to orient solar panels and sails to 
minimize impact of the solar wind.  An additional response 
might be to power down subsystems to minimize disruptions 
and damage from charged particles. 

Thus, with such capabilities, an ANTS mission will exhibit 
self-protecting behavior.  As noted in the section on self-
configuring behavior, after-effects of protective action will, in 
general, necessitate ANTS self-reconfiguration.  For example, 
after solar sails had been trimmed for the storm blast of solar 
wind, individuals will have unplanned trajectories, which will 
necessitate trajectory adjustments and replanning and perhaps 
new goals.  Further, in case of the loss of individuals due to 
damage by charged particles, the ANTS self-healing behavior 
and the self-optimizing behavior may also be triggered.  Thus, 
there is an interrelatedness of the self-protecting behaviors of 
the ANTS team and the ANTS individuals. 

 

D. Lessons Learned 
 

Whereas LOGOS demonstrated that typical control center 
activities could be emulated by a multi-agent system, the 
major objective of the ACT project was to demonstrate that 
ground-based surrogate agents, each representing a spacecraft 
in a group of spacecraft, could control the overall dynamic 
behaviors of the group of spacecraft in the realization of some 
global objective.  The ultimate objective of ACT was to help 
in the understanding of the idea of progressive autonomy 
which would, as a final goal, allow the surrogate agents to 
migrate to their respective spacecraft and then allow the group 
of autonomous spacecraft to have control of their dynamic 
behaviors independent of  relying on ground control. 
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ACT correctly emulated the correct interaction between 
surrogate agents and their respective spacecraft.  This 
“correctness” was determined by comparison between what 
the surrogate did versus what a human controller on the 
ground would have done, in conjunction with what the 
controllers associated with the other surrogates would have 
done, to achieve a global objective.  This analysis was 
undertaken more at the heuristic level than at a formal level.  
The design of the surrogates was realized in a modular 
fashion.  This design was performed in this fashion in order to 
support the concept of incremental placement of the functional 
capabilities of the surrogate agent in the respective spacecraft, 
until the spacecraft was truly agent-based and “autonomous”.  
This particular aspect of the ACT project was heuristically 
realized but not rigorously (formally) tested out.   

    

E. Verification & Correctness 
The fact that the “correctness” of ACT (which was after all 

a prototype system) was heuristically realized rather than 
formally, or even systematically, verified raises an issue:  
Given that NASA is moving towards more complex systems 
based on the idea of swarm technologies and moving from 
self-direction to self-governance, how can we be assured of 
the correctness of these systems? 

The use of formal methods has been identified as a means 
of dealing with this complex problem.    Formal approaches 
were previously used in the specification and verification of 
the LOGOS system.   A formal specification in CSP 
highlighted a number of errors and omissions in the system.   
These, and other, errors were also found by an automated tool 
[22] which implements a NASA patent-pending approach to 
requirements-based programming [23].    

Mission such as ANTS, however, pose even greater 
problems: large numbers of interacting components, emergent 
behavior, evolving behavior (due to learning) with the same 
behavior patterns unlikely to be repeated, and extremely 
complex functionality.    While ANTS is currently still a 
concept mission, it is likely that it and other swarm-based 
approaches will form the basis of many future NASA 
exploration missions, so the need to address these issues is 
likely to become more significant in the future [21]. 

Formal Approaches to Swarm Technologies (FAST) is a 
current NASA project to examine the issues in formally 
specifying and verifying swarm-based systems.   The project 
has looked at several potential approaches for specifying 
swarm, using ANTS as its testbed, and is developing a hybrid 
formal method that will be most appropriate for use in the 
development of such systems [19], [20]. 

 
 

VI. CONCLUSIONS  
NASA missions represent some of the most extreme 

examples of the need for survivable systems that cannot rely 
on support and direction from humans while accomplishing 
complex objectives under dynamic and difficult 
environmental conditions.  Future missions will embody 

greater needs for longevity in the face of significant 
constraints, in terms of cost and the safety of human life.  
Future missions also will have increasing needs for 
autonomous behavior not only to reduce operations costs and 
overcome practical communications limitations (signal 
propagation delays and low data rates), but also to overcome 
the inability of humans to perform long-term missions in 
space.  There is an increasing realization that future missions 
must be not only autonomous, but also exhibit the properties 
of autonomic systems for the survivability of both individuals 
and systems. 

As described, the LOGOS and ACT architectures provide 
for a flexible implementation of a wide range of intelligent 
and autonomic agents.  The ACT architecture allows for easy 
removal of components not needed for reactive agents, and the 
inclusion of the necessary components to implement 
intelligent and autonomic agents.  It is also flexible so that 
additional unforeseen needs can be satisfied by new 
components that can be added without affecting previous 
components. 

The ultimate goal of our work is to transition proven agent 
and autonomic technology into operational NASA systems. 
The implementation of the scenarios discussed above (and 
others under development) will provide an opportunity to 
exercise, evaluate, and refine the capabilities supported by the 
agent architectures.  It will also provide an opportunity for 
space mission designers and developers to “see” agent and 
autonomic technology in action and their resulting benefits.  
This will enable them to make a better determination of the 
role that this technology can play in their missions. 

We have illustrated the interrelationship of autonomous and 
autonomic systems with reference to two existing NASA 
prototype systems, namely ACT and LOGOS, and have 
examined the relationship for a future mission, ANTS.  It is 
clear that the separation of autonomy and autonomicity as 
mission characteristics will decrease in the future and 
eventually will become negligible, with autonomicity being 
essential to move from self-direction to self-governance. 
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